# WT0132P4-A1 技术规格书



版本 2.4

#### 免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

#### 注意

由于产品版本升级或其他原因,本手册内容有可能变更。深圳市启明云端科技有限公司保留在没有任何通知或者提示的情况下对本手册的内容进行修改的权利。本手册仅作为使用指导,深圳市启明云端科技有限公司尽全力在本手册中提供准确的信息,但是深圳市启明云端科技有限公司并不确保手册内容完全没有错误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。

# 修改记录

| 版本号    | 日期        | 制定/变更内容                  | 制定/修改人     | 审核人   |
|--------|-----------|--------------------------|------------|-------|
| V1.0   | 2024-9-12 | 创建文档                     | Pail       | Louie |
|        |           | 1、WT0132P4-A1 引脚布局&描述    |            |       |
| V1. 1  | 2025-2-06 | 处,修改第 32 引脚描述            | <br>  Pail | Louie |
| V 1. 1 | 2025-2-06 | 2、增加 WT0132P4-A1 核心板尺    | rall       | Louie |
|        |           | 寸横截面尺寸                   |            |       |
| V2.0   | 2025-3-11 | 更新文档模板                   | Pail       | Louie |
|        | 2025-4-09 | 1、对3.2引脚描述内对部分引脚         |            |       |
| V2. 1  |           | 的描述做补充说明                 | Pail       | Louie |
| V 2. 1 |           | 2、对4.3建议工作条件进行勘误         | lan        | Louie |
|        |           | 3、更新 WT0132P4-A1 尺寸图     |            |       |
| V2. 2  | 2025-5-29 | 1、2.2硬件参数处一处勘误           | Pail       | Louie |
|        |           | 1、全文 ESP32-P4 主频 400 MHz |            |       |
| V2. 3  | 2025-6-04 | 更正为 360 MHz, 修改主芯片架      | Pai1       | Louie |
|        |           | 构图。                      |            |       |
| V2. 4  | 2025-7-28 | 1、修改3.1引脚布局中的引脚布         | Pai1       | Louie |
| V 4. 4 | 2020 1 20 | 局图。                      | Lam        | Louie |



# 目录

| 1. | 概述5                                     |
|----|-----------------------------------------|
|    | 1.1. 产品简介5                              |
|    | 1.2. 产品特点                               |
|    | 1.3. 产品图片                               |
|    | 1.4. 应用场景                               |
| 2. | 产品规格                                    |
|    | 2.1. 功能框图                               |
|    | 2.2. 硬件参数                               |
| 3. | 引脚定义                                    |
| •  | 3.1. 引脚布局                               |
|    | 3. 2. 引脚描述                              |
|    | 3.3. 启动项配置                              |
|    | 3. 3. 1. Strapping 管脚                   |
|    | 3. 3. 2. 芯片启动模式控制                       |
|    | 3. 3. 3. ROM 日志打印控制                     |
| 4. | 电气特性                                    |
| 4. | 4.1. 绝对最大限定值                            |
|    | 4.2. 功耗特性                               |
|    |                                         |
| _  | 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - |
| 5. | WT0132P4-A1 原理图                         |
| 6. | WT0132P4-A1 尺寸16                        |
| 7. | 存储条件                                    |
| 8. | 回流焊曲线17                                 |
| 9. | 联系我们                                    |

# 1. 概述

### 1.1.产品简介

WT0132P4-A1 是深圳市启明云端有限公司推出的基于乐鑫 ESP32-P4 芯片设计的一款集成 NOR FLASH 小尺寸邮票孔核心板。核心处理器芯片 ESP32-P4 封装内可叠封 16MB 或 32MB PSRAM,包含 2 个高性能(HP)内核和一个低功耗(LP)内核。HP 内核采用 RISC-V 双核处理器,主频高达 360 MHz,包含一个 JPEG 编/解码器、像素处理加速器、H. 264 视频编码器和 MIPI 接口;具有强大的图像和语音处理能力。

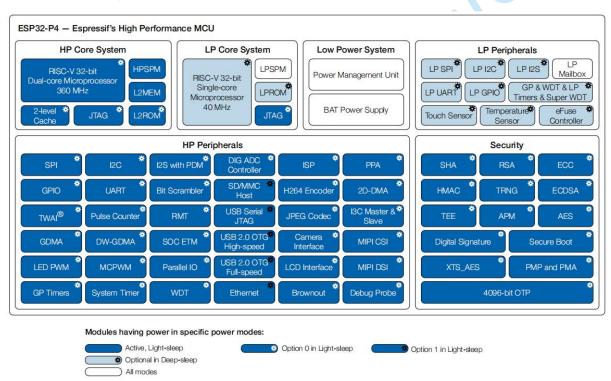



图1: 主芯片架构图

WT0132P4-A1 系列共两种规格,具体信息见下表。

WT0132P4-A1 系列型号对比

| 采购型号               | Flash | Psram | 核心板尺寸尺寸(mm)   |
|--------------------|-------|-------|---------------|
| WT0132P4-A1-N16R16 | 16MB  | 16MB  | 25. 00*20. 00 |
| WT0132P4-A1-N16R32 | 16MB  | 32MB  | 25. 00*20. 00 |

#### 1.2. 产品特点

- 双核 360 MHz 高主频 CPU
- 内置 16 MB Flash 与 16/32 MB Psram
- ESP32-P4 芯片全引脚引出
- 支持多个多媒体接口
- 核心板尺寸小,便于硬件设计
- 开发资料齐全

### 1.3.产品图片



图2: WT0132P4-A1-N16R16(正)



图4: WT0132P4-A1-N16R32(正)



图3: WT0132P4-A1-N16R16(背)



图5: WT0132P4-A1-N16R32(背)

### 1.4.应用场景

- 智能家居
- 工业自动化
- 消费电子产品
- HMI 人机交互
- 电子机器人
- 摄像头视频流传输
- USB 设备

# 2. 产品规格

# 2.1.功能框图




图6: WT0132P4-A1 功能框图

### 2.2. 硬件参数

|      | CPU        | ESP32-P4         |  |
|------|------------|------------------|--|
| ナ₩   | 内核         | RISC-V 32 位双核处理器 |  |
| 主控   | <b>土</b> 梅 | 360 MHz(HP 系统)   |  |
|      | 主频         | 40 MHz(LP 系统)    |  |
|      | DOM        | 128 KB HP ROM    |  |
|      | ROM        | 16 KB LP ROM     |  |
| 存储   | SRAM       | 768 KB HP L2MEM  |  |
|      | SKAM       | 32 KB LP SRAM    |  |
|      | Flash      | 16 MB            |  |
|      | GPI0       | 55               |  |
|      | SPI        | 2                |  |
|      | LP SPI     | 1                |  |
| 外设接口 | UART       | 5                |  |
|      | LP UART    | 1                |  |
|      | 13C        | 1                |  |
|      | I2C        | 2                |  |

| 12/12/11/19 /1 | 17月4117月11日11日11日11日11日11日11日11日11日11日11日11日11日 | #101971 4 W1 20 2011 X 2 12 12 12 12 12 12 12 12 12 12 12 12 1 |
|----------------|-------------------------------------------------|----------------------------------------------------------------|
|                | LP I2C                                          | 1                                                              |
|                | I2S                                             | 3                                                              |
|                | LP I2S                                          | 1                                                              |
| USB JTAG       |                                                 | 1                                                              |
|                | SDI0                                            | 1                                                              |
|                | LED PWM                                         | 1                                                              |
|                | MCPWM                                           | 2                                                              |
|                | TWAI*控制器                                        | 809                                                            |
|                | (兼容 ISO 11898-1)                                | 3                                                              |
|                | 高速 USB 2.0 OTG                                  | <b>-5</b> 1                                                    |
|                | 全速 USB 2.0 OTG                                  | 1                                                              |
|                | 百兆以太网 MAC                                       | 1                                                              |
| MIPI CSI-2     |                                                 | 1                                                              |
|                | MIPI DSI                                        | 1                                                              |
|                | 并行 IO (PARLIO) 控制器                              | 1                                                              |
|                | 12 位多通道模/数转换器                                   | 2                                                              |
|                | 温度传感器                                           | 1                                                              |
|                | 触摸传感器                                           | 1                                                              |
|                | 模拟电压比较器                                         | 1                                                              |
|                | 欠压监测                                            | 1                                                              |
|                | JPEG 编/解码器                                      | 1                                                              |
| 图像与语音          | 像素处理加速器 (PPA)                                   | 1                                                              |
| 处理接口           | 图像信号处理器 (ISP)                                   | 1                                                              |
|                | H264 视频编码器                                      | 1                                                              |
|                |                                                 |                                                                |

# 3. 引脚定义

### 3.1. 引脚布局

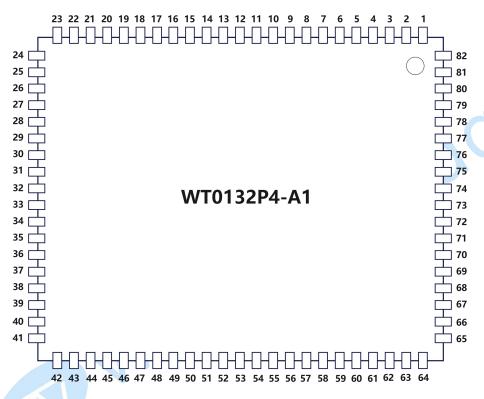



图7: 引脚布局图

# 3.2. 引脚描述

引脚功能描述

| 引脚 | 名称         | 描述                  |
|----|------------|---------------------|
| 1  | GND        | 电源地                 |
| 2  | DSI_DATAP1 | MIPI DSI PHY DATAP1 |
| 3  | DSI_DATAN1 | MIPI DSI PHY DATAN1 |
| 4  | DSI_CLKN   | MIPI DSI PHY CLKN   |
| 5  | DSI_CLKP   | MIPI DSI PHY CLKP   |
| 6  | DSI_DATAPO | MIPI DSI PHY DATAPO |
| 7  | DSI_DATANO | MIPI DSI PHY DATANO |
| 8  | GND        | 电源地                 |
| 9  | CSI_DATANO | MIPI CSI PHY DATANO |
| 10 | CSI_DATAPO | MIPI CSI PHY DATAPO |



|    |             | 公编件认有限公司 WIUI32F4 AI系列又小戏衔 I                          |
|----|-------------|-------------------------------------------------------|
| 11 | CSI_CLKP    | MIPI CSI PHY CLKP                                     |
| 12 | CSI_CLKN    | MIPI CSI PHY CLKN                                     |
| 13 | CSI_DATAN1  | MIPI CSI PHY DATAN1                                   |
| 14 | CSI_DATAP1  | MIPI CSI PHY DATAP1                                   |
| 15 | GND         | 电源地                                                   |
| 16 | USB_DM      | USB2 OTG PHY DM                                       |
| 17 | USB_DP      | USB2 OTG PHY DP                                       |
| 18 | GND         | 电源地                                                   |
| 19 | GPI024      | GPIO24, USB1P1_NO                                     |
| 20 | GPI025      | GPI025, USB1P1_P0                                     |
| 21 | GND         | 电源地                                                   |
| 22 | GPI026      | GPI026, USB1P1_N1                                     |
| 23 | GPI027      | GPI027, USB1P1_P1                                     |
| 24 | GPI028      | GPI028, GPSPI SPI2 CS, EMAC PHY RXDV, DBG_PSRAM_D     |
| 25 | GP1029      | GPI029, GPSPI SPI2 D, EMAC PHY RXDO, DBG_PSRAM_Q      |
| 26 | GP1030      | GPI030, GPSPI SPI2 CK, EMAC PHY RXD1, DBG_PSRAM_WP    |
| 27 | GPI031      | GPIO31, GPSPI SPI2 Q, EMAC PHY RXER, DBG_PSRAM_HOLD   |
| 28 | GPI032      | GPI032, I3CMST_SCL, GPSPI SPI2 HOLD,                  |
| 20 | GF 1032     | EMAC RMII CLK, DBG_PSRAM_DQ4                          |
| 29 | GPI033      | GPI033, I3CMST_SDA, GPSPI SPI2 WP,                    |
| 29 | GI 1033     | EMAC PHY TXEN, DBG_PSRAM_DQ5                          |
| 30 | GPI034      | GPI034, GPSPI SPI2 I04, EMAC PHY TXD0, DBG_PSRAM_DQ6  |
| 31 | GPI035      | GPI035, GPSPI SPI2 I05, EMAC PHY TXD1, DBG_PSRAM_DQ7  |
| 51 | 01 1033     | (1035下拉,进入下载模式)                                       |
| 32 | ESD IDO VOA | 输出电源                                                  |
| 52 | ESP_LDO_V04 | (输出电压范围0.5 <sup>~</sup> 2.7V或者3.3V,最大输出电流0.2A)        |
| 33 | GPI036      | GPI036, GPSPI SPI2 I06, EMAC PHY TXER, DBG_PSRAM_DQS0 |
| 33 | 01 1030     | (默认I035、36上拉,进入SPI Boot模式)                            |
| 34 | GPI037      | GPI037, UARTO_TXD, GPSPI SPI2 I07(下载串口)               |
|    |             |                                                       |



| - 11 20000000000000000000000000000000000 |                                          |
|------------------------------------------|------------------------------------------|
| 35 GPI038 GPI038, UARTO                  | _RXD, GPSPI SPI2 DQS(下载串口)               |
| 36 GPI039 GPI039, SD                     | 1_CDATAO_PAD, REF_50M_CLK_PAD            |
| 37 GPI040 GPI040, SD1                    | _CDATA1_PAD, GMAC_PHY_TXEN_PAD           |
| 38 GPI041 GPI041, SD1                    | _CDATA2_PAD, GMAC_PHY_TXDO_PAD           |
| 39 GPI042 GPI042, SD1                    | _CDATA3_PAD, GMAC_PHY_TXD1_PAD           |
| 40 GPI043 GPI043, SD                     | 1_CCLK_PAD, GMAC_PHY_TXER_PAD            |
| 41 VCC 电源                                | f(核心板供电5V输入端)                            |
| 42 GND                                   | 电源地                                      |
| 43 GPI044 GPI044, SD                     | 1_CCMD_PAD, GMAC_RMII_CLK_PAD            |
| 44 GPI045 GPI045, SD1                    | _CDATA4_PAD, GMAC_PHY_RXDV_PAD           |
| 45 GPI046 GPI046, SD1                    | _CDATA5_PAD, GMAC_PHY_RXDO_PAD           |
| 46 GPI047 GPI047, SD1                    | _CDATA6_PAD, GMAC_PHY_RXD1_PAD           |
| 47 GPI048 GPI048, SD1                    | _CDATA7_PAD, GMAC_PHY_RXER_PAD           |
| 48 GPI049 GPI049, GMA                    | AC_PHY_TXEN_PAD, ADC2_CHANNEL2           |
| 49 GPI050 GPI050, GMA                    | AC_RMII_CLK_PAD, ADC2_CHANNEL3           |
| 50 GPI051 GPI051, GMAC_PHY               | _RXDV_PAD, ADC2_CHANNEL4, ANA_COMPO      |
| 51 GPI052 GPI052, GMAC_PHY               | _RXDO_PAD, ADC2_CHANNEL5, ANA_COMPO      |
| 52 GP1053 GP1053, GMAC_PHY               | _RXD1_PAD, ADC2_CHANNEL6, ANA_COMP1      |
| 53 GND                                   | 电源地                                      |
| 54 GPI054 GPI054, GMAC_PHY               | _RXER_PAD, ADC2_CHANNEL7, ANA_COMP1      |
| 55 GPI02 GPI02, MT                       | CK, LP_GPIO2, TOUCH_CHANNELO             |
| 56 GPI03 GPI03, MT                       | DI, LP_GPIO3, TOUCH_CHANNEL1             |
| 57 GPI04 GPI04, MT                       | MS, LP_GPIO4, TOUCH_CHANNEL2             |
| 58 GPI05 GPI05, MT                       | DO, LP_GPIO5, TOUCH_CHANNEL3             |
| 59 GPI06 GPI06, SPI2_HC                  | OLD_PAD, LP_GPI06, TOUCH_CHANNEL4        |
| 60 GPI07 GPI07, SPI2_0                   | CS_PAD, LP_GPIO7, TOUCH_CHANNEL5         |
| 61 GPIO8 GPIO8, UARTO_RTS_PAI            | D, SPI2_D_PAD, LP_GPI08, TOUCH_CHANNEL6  |
| 62 GPI09 GPI09, UARTO_CTS_PAD            | , SPI2_CK_PAD, LP_GPIO9, TOUCH_CHANNEL7  |
| 63 GPI010 GPI010, UART1 TXD PA           | D, SPI2 Q PAD, LP GPIO10, TOUCH CHANNEL8 |



| 64 | GND     | 电源地                                                           |
|----|---------|---------------------------------------------------------------|
| 65 | GPI011  | GPIO11, UART1_RXD_PAD, SPI2_WP_PAD, LP_GPIO11, TOUCH_CHANNEL9 |
| 66 | GPI012  | GPI012, UART1_RTS_PAD, LP_GPI012, TOUCH_CHANNEL10             |
| 67 | GPIO13  | GPI013, UART1_CTS_PAD, LP_GPI013, TOUCH_CHANNEL11             |
| 68 | GPI014  | GPI014, LP_GPI014, LP_UART_TXD_PAD, TOUCH_CHANNEL12           |
| 69 | GPIO15  | GPI015, LP_GPI015, LP_UART_RXD_PAD, TOUCH_CHANNEL13           |
| 70 | CHIP_PU | 使能P4芯片(内部10K上拉)                                               |
| 71 | GPI00   | GPI00, LP_GPI00, XTAL_32K_N                                   |
| 72 | GPI01   | GPIO1, LP_GPIO1, XTAL_32K_P                                   |
| 73 | GND     | 电源地                                                           |
| 74 | GPI016  | GPI016, ADC1_CHANNELO                                         |
| 75 | GPIO17  | GPI017, ADC1_CHANNEL1                                         |
| 76 | GPI018  | GPI018, ADC1_CHANNEL2                                         |
| 77 | GPI019  | GPI019, ADC1_CHANNEL3                                         |
| 78 | GP1020  | GPIO20, ADC1_CHANNEL4                                         |
| 79 | GPIO21  | GPIO21, ADC1_CHANNEL5                                         |
| 80 | GPI022  | GPIO22, ADC1_CHANNEL6                                         |
| 81 | GPI023  | GPIO23, ADC1_CHANNEL7, REF_50M_CLK_PAD                        |
| 82 | GND     | 电源地                                                           |

### 3.3. 启动项配置

#### 3.3.1. Strapping 管脚

芯片在上电或硬件复位时,可以通过 Strapping 管脚和 eFuse 位配置如下 启动参数,无需微处理器的参与:

#### • 芯片启动模式

- Strapping 管脚: GPI035, GPI036, GPI037, GPI038

#### • ROM 日志打印

- Strapping 管脚: GPIO36
- eFuse 位: EFUSE\_UART\_PRINT\_CONTROL

#### • JTAG 信号源

- Strapping 管脚: GPI034
- eFuse 位: EFUSE\_DIS\_PAD\_JTAG、EFUSE\_DIS\_USB\_JTAG 和 EFUSE\_JTAG\_SEL\_ENABLE 上述 eFuse 位的默认值均为 0, 也就是说没有烧写过。eFuse 只能烧写一次,一旦烧写为 1, 便不能恢复为 0。

上述 strapping 管脚如果没有连接任何电路或连接的电路处于高阻抗状态,则其默认值(即逻辑电平值)取决于管脚内部弱上拉/下拉电阻在复位时的状态。

Strapping 管脚默认配置

| Strapping 管脚 | 默认配置 | 值 |
|--------------|------|---|
| GPI034       | 浮空   |   |
| GPI035       | 弱上拉  | 1 |
| GPI036       | 浮空   | - |
| GPI037       | 浮空   | _ |
| GPI038       | 浮空   | _ |

要改变 strapping 管脚的值,可以连接外部下拉/上拉电阻。如果 ESP32-P4 用作主机 MCU 的从设备, strapping 管脚的电平也可通过主机 MCU 控制。

所有 strapping 管脚都有锁存器。系统复位时,锁存器采样并存储相应 strapping 管脚的值,一直保持到芯片掉电或关闭。锁存器的状态无法用其他方式更改。因此,strapping 管脚的值在芯片工作时一直可读取,strapping 管脚 在芯片复位后作为普通 I0 管脚使用。

#### 3.3.2. 芯片启动模式控制

复位释放后,GPI035 ~ GP0I38 共同决定启动模式。详见下表。

| 启动模式                | GPI035 | GPI036 | GPI037 | GPI038 |
|---------------------|--------|--------|--------|--------|
| SPI Boot*           | 1*     | 任意值    | 任意值    | 任意值    |
| Joint Download Boot | 0      | 1      | 任意值    | 任意值    |

<sup>\*</sup>表示默认值和默认配置。

Joint Download Boot 模式下支持以下下载方式:

- USB Download Boot:
  - USB-Serial-JTAG Download Boot

- USB 2.0 OTG Download Boot
- UART Download Boot
- SPI Slave Download Boot

#### 3.3.3. ROM 日志打印控制

系统启动过程中, ROM 代码日志可打印至:

- (默认) UARTO 和 USB 串口/JTAG 控制器
- USB 串口/JTAG 控制器
- UARTO

EFUSE\_UART\_PRINT\_CONTROL 和 GPI036 控制 UARTO ROM 日志打印,详见下

#### 表

| UARTO ROM 日志打印 | EFUSE_UART_PRINT_CONTROL | GPI036 |
|----------------|--------------------------|--------|
|                | 0*                       | 忽略     |
| 使能*            |                          | 0      |
|                | 2                        | 1      |
| V              | 1                        | 1      |
| 关闭             | 2                        | 0      |
|                | 3                        | 忽略     |

<sup>\*</sup>表示默认值和默认配置。

EFUSE\_DIS\_USB\_SERIAL\_JTAG\_ROM\_PRINT 控制 **USB 串口/JTAG 控制器** ROM 日志打印,详见下表。

| USB 串口/JTAG ROM 日志打印控制 | EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT |
|------------------------|-------------------------------------|
| 使能*                    | 0*                                  |
| 关闭                     | 1                                   |

<sup>\*</sup>表示默认值和默认配置。

# 4. 电气特性

#### 4.1.绝对最大限定值

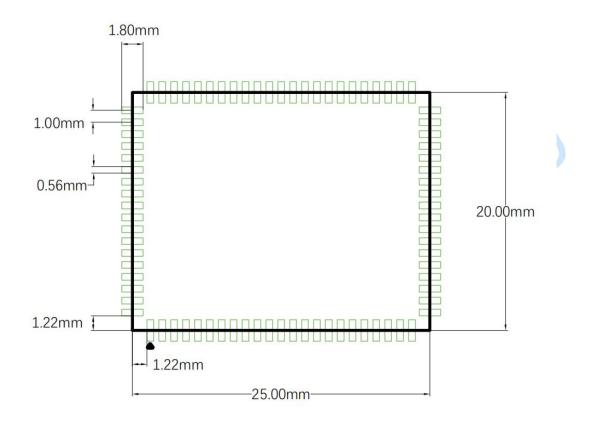
超出绝对最大额定值可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在这些或其它条件下超出本技术规格指标的功能性操作。长时间暴露在绝对最大额定条件下可能会影响 WT0132P4-A1 的可靠性。

### 4.2. 功耗特性

暂无

### 4.3. 建议工作条件

| 符号           | 参数        | 最小值 | 典型值 | 最大值  | 单位           |
|--------------|-----------|-----|-----|------|--------------|
| VCC          | 电源管脚电压    | 4.8 | 5   | 5. 5 | V            |
| $I_{ m vcc}$ | 外部电源的供电电流 | _   | 1   | -    | A            |
| $T_{A}$      | 工作环境温度    | -40 | _   | 85   | $\mathbb{C}$ |


# 5. WT0132P4-A1 原理图

暂无

图8: WT0132P4-A1 原理图

# 6. WT0132P4-A1 尺寸

下图为核心板的俯瞰图与正视图,公差±0.2 mm。



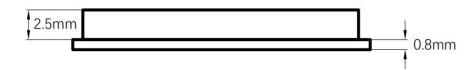



图9: WT0132P4-A1 尺寸图

# 7. 存储条件

| 条件    | 参数                             |  |
|-------|--------------------------------|--|
| 存储条件  | 密封MBB中, < 40 ℃/90 %RH 的非冷凝大气环境 |  |
| 使用条件  | 25±5 ℃、60 %RH下,168 小时内         |  |
| 潮湿敏感度 | 3 级                            |  |

# 8. 回流焊曲线

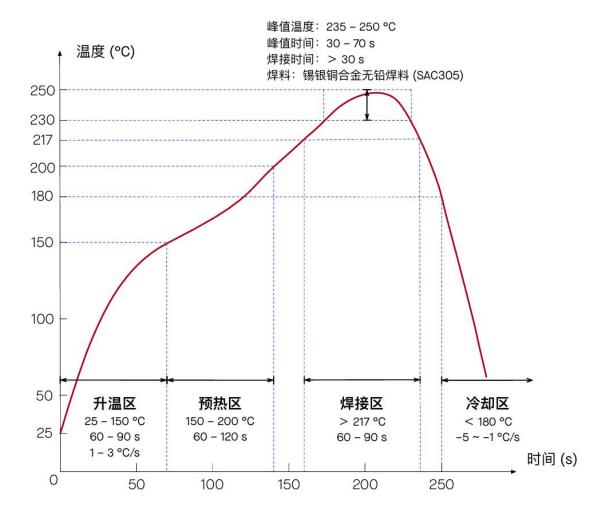



图10: 回流焊温度曲线图